MINIMAL QUASI-F COVERS OF SOME EXTENSION

CHANG IL KIM* AND KAP HUN JUNG**

ABSTRACT. Observing that every Tychonoff space X has an extension kX which is a weakly Lindelöf space and the minimal quasi-F cover QF(kX) of kX is a weakly Lindelöf, we show that $\Phi_{kX} : QF(kX) \to kX$ is a $z^{\#}$ -irreducible map and that $QF(\beta X) = \beta QF(kX)$. Using these, we prove that QF(kX) = kQF(X) if and only if $\Phi_X^k : kQF(X) \to kX$ is an onto map and $\beta QF(X) = QF(\beta X)$.

1. Introduction

All spaces in this paper are assumed to be Tychonoff and βX (vX, resp.) denotes the Stone-Čech compactification (Hewitt realcompactification, resp.) of X.

Iliadis constructed the absolute of a Hausdorff space X, which is the minimal externally disconnected cover $(E(X), \pi_X)$ of X and they turn out to be the perfect onto projective covers ([6]). To generalize extremally disconnected spaces, basically disconnected spaces, quasi-Fspaces and cloz-spaces have been introduced and their minimal covers have been studied by various aurthors ([1], [4], [5], [8], [9]). In these ramifications, minimal covers of compact spaces can be nisely characterized.

In particular, Henriksen and Gillman intoduced the concept of quasi- F spaces in which every dense cozero-set is C^* -embedded ([2]). Each space X has the minimal quasi-F cover $(QF(X), \Phi_X)$ ([5]). In [5], authors investigated when $\beta QF(X) = QF(\beta X)$ and $QF(X) = \Phi_{\beta X}^{-1}(X)$, where $(QF(\beta X), \Phi_{\beta X})$ is the minimal quasi-F cover of βX .

It is well-known that each space has the minimal extremally disconnected cover $(E(X), k_X)$ and that $\beta E(X) = E(\beta X)$ ([8]). Moreover,

Received March 18, 2013; Accepted April 04, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 54G10, 54C10; Secondary 54D20.

Key words and phrases: quasi-F space, covering map, weakly Lindelöf space. Correspondence should be addressed to Kap Hun Jung, jkh58@hanmail.net.

internal characterizations of a space X that is equivalent to E(vX) = vE(X) is known ([8]). Similar results for the minimal basically disconnected cover $(\Lambda X, \Lambda_X)$ are given by [7].

For any space X, there is an extension (kX, k_X) of X such that

- (1) kX is a weakly Lindelöf space, and
- (2) for any continuous map $f : X \to Y$, there is a continuous map $f^k : kX \to kY$ such that $f^k|_X = f([10])$.

The purpose to write this paper is to find the relation of the minimal quasi-F cover QF(kX) of kX and kQF(X). For any space X, we show that QF(kX) is a weakly Lindelöf space and $\Phi_{kX} : QF(kX) \to kX$ is a $z^{\#}$ - irreducible map and that $QF(\beta X) = \beta QF(kX)$. Moreover, we show that kQF(X) = QF(kX) if and only if $\Phi_X^k : kQF(X) \to kX$ is an onto map and $QF(\beta X) = \beta QF(X)$.

For the terminology, we refer to [2] and [9].

2. Quasi-F covers

Let X be a space. It is well-known that the collection $\mathcal{R}(X)$ of all regular closed sets in X, when partially ordered by inclusion, becomes a complete Boolean algebra, in which the join, meet, and complementation operations are defined as follows :

For any
$$A \in \mathcal{R}(X)$$
 and any $\mathcal{F} \subseteq \mathcal{R}(X)$,
 $\bigvee \mathcal{F} = cl_X (\cup \{F \mid F \in \mathcal{F}\}),$
 $\bigwedge \mathcal{F} = cl_X (int_X (\cap \{F \mid F \in \mathcal{F}\})),$ and
 $A' = cl_X (X - A).$

A sublattic of $\mathcal{R}(X)$ is a subset of $\mathcal{R}(X)$ that contains \emptyset , X and is closed under finite joins and finite meets ([8]).

A map $f: Y \to X$ is called a *covering map* if it is an onto continuous, perpect, and irreducible map ([8]).

Lemma 2.1. ([8])

- (1) Let X be a dense subspace of Y. Then the map $\phi : R(Y) \to R(X)$, defined by $\phi(A) = A \cap X$, is a Boolean isomorphism.
- (2) Let $f: Y \to X$ be a covering map. Then the map $\psi: R(Y) \to R(X)$, defined by $\psi(A) = f(A)$, is a Boolean isomorphism.

In the above lemma, the inverse map $\phi^{-1} : R(X) \to R(Y)$ of ϕ is given by $\phi^{-1}(B) = cl_Y(B)$ $(B \in R(X))$ and the inverse map $\psi^{-1} : R(X) \to R(Y)$ of ψ is given by $\psi^{-1}(B) = cl_Y(int_Y(f^{-1}(B))) = cl_Y(f^{-1}(int_X(B)))$ $(B \in R(X)).$

DEFINITION 2.2. A space X is called a quasi-F space if for any zerosets A, B in $X, cl_X(int_X(A \cap B)) = cl_X(int_X(A)) \cap cl_X(int_X(B))$, equivalently, every dense cozero-set in X is C^{*}-embedded in X.

It is well-known that a space X is a quasi-F space if and only if βX (or vX) is a quasi-F space.

DEFINITION 2.3. Let X be a space. Then a pair (Y, f) is called

- (1) a cover of X if $f: X \to Y$ is a covering map,
- (2) a quasi-F cover of X if (Y, f) is a cover of X and Y is a quasi-F space, and
- (3) a minimal quasi-F cover of X if (Y, f) is a quasi-F cover of X and for any quasi-F cover (Z, g) of X, there is a covering map $h: Z \to Y$ such that $f \circ h = g$.

Let X be a space, $Z(X) = \{Z \mid Z \text{ is a zero-set in } X\}$ and $Z(X)^{\#} = \{cl_X(int_X(A)) \mid A \in Z(X)\}$. Then $Z(X)^{\#}$ is a sublattice of R(X).

Suppose that X is a compact space. Let $QF(X) = \{\alpha \mid \alpha \text{ is a } Z(X)^{\#}-\text{ultrafilter}\}$ and for any $A \in Z(X)^{\#}$, let $\sum_{A}^{Z(X)^{\#}} = \{\alpha \in QF(X) \mid A \in \alpha\}$. Then the space QF(X), equipped with the topology for which $\{QF(X) - \sum_{A}^{Z(X)^{\#}} \mid A \in Z(X)^{\#}\}$ is a base, is a quasi-F space. Define the map $\Phi_X : QF(X) \to X$ by $\Phi_X(\alpha) = \cap\{A \mid A \in \alpha\}$. Then $(QF(X), \Phi_X)$ is the minimal quasi-F cover of X and for any $A \in Z(X)^{\#}, \Phi_X(\sum_{A}^{Z(X)^{\#}}) = A([4])$. Let X, Y be spaces and $f: Y \to X$ a map. For any $U \subseteq X$, let f_U :

Let X, Y be spaces and $f: Y \to X$ a map. For any $U \subseteq X$, let $f_U: f^{-1}(U) \to U$ denote the restriction and co-restriction of f with respect to $f^{-1}(U)$ and U, respectively. For any space X, let $(QF(\beta X), \Phi_{\beta})$ denote the minimal quasi-F cover of βX .

We recall that a covering map $f: Y \to X$ is called $z^{\#} - irreducible$ if $f(Z(Y)^{\#}) = Z(X)^{\#}$. Let $f: Y \to X$ be a covering map and Z a zero-set in X. By Lemma 2.1, $f(cl_Y(int_Y(f^{-1}(Z)))) = cl_X(int_X(Z))$ and $cl_Y(int_Y(f^{-1}(Z))) \in Z(Y)^{\#}$. Hence $Z(X)^{\#} \subseteq f(Z(Y)^{\#})$ and so $f: Y \to X$ is $z^{\#}$ -irreducible if and only if $f(Z(Y)^{\#}) \subseteq Z(X)^{\#}$. Using these we have the following :

PROPOSITION 2.4. Let $f: Y \to X$ and $g: W \to Y$ be covering maps. Then $f \circ g: W \to X$ is $z^{\#}$ -irreducible if and only if $f: Y \to X$ and $g: W \to Y$ are $z^{\#}$ -irreducible.

It is well-known that Φ_{β} is $z^{\#}$ -irreducible ([5]).

3. Minimal quasi-F covers of kX

A z-filter \mathcal{F} on a space X is called *real* if \mathcal{F} is closed under the countable intersection.

For any space X, let $kX = vX \cup \{p \in \beta X - vX \mid \text{there is a real } z-\text{filter}$ \mathcal{F} on X such that $\cap \{cl_{vX}(F) \mid F \in \mathcal{F}\} = \emptyset$ and $p \in \cap \{cl_{\beta X}(F) \mid F \in \mathcal{F}\}\}$. Then kX is an extension of a space X such that $vX \subseteq kX \subseteq \beta X$ ([10]).

We recall that a space X is called a weakly Lindelöf space if for any open cover \mathcal{U} of X, there is a countable subfamily \mathcal{V} of \mathcal{U} such that $\cup \{V \mid V \in \mathcal{V}\}$ is a dense subset of X.

LEMMA 3.1. ([10]) For any space X, kX is a weakly Lindelöf space.

It is well known that a space X is weakly Lindelöf if and only if for any $Z(X)^{\#}$ -filter \mathcal{A} with the countable meet property, $\cap \{A \mid A \in \mathcal{A}\} \neq \emptyset$.

Let X be a space. For any $A \in Z(\beta X)^{\#}$, let $\sum_{A}^{Z(\beta X)^{\#}} = \sum_{A}$ and $\sum_{A} \cap QF(kX) = \lambda_{A}$. Then for any $A \in Z(\beta X)^{\#}$, $\Phi_{\beta}(\sum_{A}) = A$, and $\Phi_{kX}(\lambda_{A}) = A \cap kX$, because $QF(kX) = \Phi_{\beta}^{-1}(kX)$ and $\Phi_{kX} = \Phi_{\beta_{kX}}$ ([7]).

THEOREM 3.2. Let X be a space. Then we have the following :

- (1) QF(kX) is a weakly Lindelöf space, and
- (2) $\Phi_{kX}: QF(kX) \to kX$ is a $z^{\#}$ -irreducible map.

Proof. (1) Let \mathcal{A} be a z-filter on QF(kX) with the countable meet property and $\cap \{A \mid A \in \mathcal{A}\} = \emptyset$. Suppose that $\cap \{\Phi_{kX}(A) \mid A \in \mathcal{A}\} \neq \emptyset$. Pick $x \in \cap \{\Phi_{kX}(A) \mid A \in \mathcal{A}\}$. Since \mathcal{A} is a z-filter on QF(kX), \mathcal{A} has the finite intersection property. Hence $\{A \cap \Phi_{kX}^{-1}(x) \mid A \in \mathcal{A}\}$ is a family of closed set in $\Phi_{kX}^{-1}(x)$ with the finite intersection property. Since $\Phi_{kX}^{-1}(x)$ is a compact subset in QF(kX), $\cap \{A \cap \Phi_{kX}^{-1}(x) \mid A \in \mathcal{A}\} \neq \emptyset$ and so $\cap \{A \mid A \in \mathcal{A}\} \neq \emptyset$. This is a contradiction. Thus $\cap \{\Phi_{kX}(A) \mid A \in \mathcal{A}\} \neq \emptyset$ and so $\cap \{A \mid A \in \mathcal{A}\} \neq \emptyset$. This is a contradiction. Thus $\cap \{\Phi_{kX}(A) \mid A \in \mathcal{A}\} = \emptyset$. Since kX is a weakly Lindelöf space, there is a sequence (A_n) in \mathcal{A} such that $cl_{kX}(\cup \{kX - \Phi_{kX}(A_n) \mid n \in N\}) = kX$. Let $A \in \mathcal{A}$. Then $\Phi_{kX}(QF(kX) - A) \supseteq kX - \Phi_{kX}(A)$ and hence $\Phi_{kX}(A') \supseteq$ $\Phi_{kX}(QF(kX) - A) \supseteq kX - \Phi_{kX}(A)$. Thus $cl_{kX}(\cup \{\Phi_{kX}(A'_n) \mid n \in N\})$ =kX. Note that

$$kX = cl_{kX} \left(\cup \left\{ \Phi_{kX}(A'_n) \mid n \in N \right\} \right)$$
$$= cl_{kX} \left(\Phi_{kX} \left(\cup \left\{ A'_n \mid n \in N \right\} \right) \right)$$
$$= \Phi_{kX} \left(cl_{kX} \left(\cup \left\{ A'_n \mid n \in N \right\} \right) \right)$$
$$= \Phi_{kX} \left(\vee \left\{ A'_n \mid n \in N \right\} \right).$$

Since Φ_{kX} is a covering map, $\forall \{A'_n \mid n \in N\} = QF(kX)$ and so $(\forall \{A'_n \mid n \in N\})' = \land \{A_n \mid n \in N\} = \emptyset$. Since \mathcal{A} has the countable meet property, it is a contradiction. Hence $\cap \{A \mid A \in \mathcal{A}\} = \emptyset$ and so QF(kX) is a weakly Lindelöf space.

(2) Take any zero-set Z in QF(kX). Since QF(kX) is a weakly Lindelöf space, QF(kX) - Z is an open weakly Lindelöf subspace of QF(kX). Hence there is a sequence (Z_n) in $Z(\beta X)^{\#}$ such that for any $n \in N$, $QF(kX) - (\Sigma_{Z_n} \cap QF(kX)) \subseteq QF(kX) - Z$ and

$$cl_{QF(kX)} \left(\cup \{QF(kX) - (\Sigma_{Z_n} \cap QF(kX)) \mid n \in N\} \right) \cap \left(QF(kX) - Z\right)$$

= $cl_{QF(kX)} \left(\cup \{QF(kX) - \lambda_{Z_n} \mid n \in N\} \right) \cap \left(QF(kX) - Z\right)$
= $QF(kX) - Z.$

Hence $\forall \{\lambda_{Z'_n} \mid n \in N\} \supseteq QF(kX) - Z \supseteq \cup \{\lambda_{Z'_n} \mid n \in N\}$. Thus $\land \{\lambda_{Z_n} \mid n \in N\} = cl_{QF(kX)}(int_{QF(kX)}(Z))$. Note that for any $A \in Z(\beta X)^{\#}, \Phi_{QF(kX)}(\lambda_A) = A \cap kX$. By Lemma 2.1,

$$\Phi_{QF(kX)}(cl_{QF(kX)}(int_{QF(kX)}(Z)))$$

= $\Phi_{QF(kX)}(\land \{\lambda_{Z_n} \mid n \in N\})$
= $\land \{\Phi_{QF(kX)}(\lambda_{Z_n}) \mid n \in N\}$
= $\land \{Z_n \cap kX \mid n \in N\}.$

and hence $\Phi_{QF(kX)}(cl_{QF(kX)}(int_{QF(kX)}(Z))) \in Z(kX)^{\#}$. Thus $\Phi_{QF(kX)}$ is a $z^{\#}$ -irreducible map.

Let X be a space. Then $\beta QF(X) = QF(\beta X)$ if and only if Φ_X is $z^{\#}$ -irreducible ([5]). Using this, we have the following :

COROLLARY 3.3. For any space, $QF(\beta X) = \beta QF(kX)$.

LEMMA 3.4. ([10]) For any continuous map $f : X \to Y$, there is a unique continuous map $f^k : kX \to kY$ such that $f^k \circ k_X = k_Y \circ f$.

Let X be a space. Then there is a covering map $h : \beta QF(X) \rightarrow QF(\beta X)$ such that $\Phi_{\beta} \circ h \circ \beta_{QF(X)} = \beta_X \circ \Phi_X$. By Lemma 3.4, there is a continuous map $\Phi_X^k : kQF(X) \rightarrow kX$ such that $\Phi_X^k \circ k_{QF(X)} = k_X \circ \Phi_X$. Since $\Phi_{\beta}^{-1}(kX) = QF(kX)$, there is a continuous map $t_X : kQF(X) \rightarrow QF(kX)$ such that $j \circ t_X = h \circ \beta_{kQF(X)}$ and $\Phi_{QF(kX)} \circ t_X = \Phi_X^k$, where $j : QF(kX) \rightarrow QF(\beta X)$ is a dense embedding. If t_X is a homeomorphism, then we write kQF(X) = QF(kX).

COROLLARY 3.5. Let X be a space. If kQF(X) = QF(kX), then $\beta QF(X) = QF(\beta X)$.

Chang Il Kim and Kap Hun Jung

Proof. Since $t_X : kQF(X) \to QF(kX)$ is a homeomorphism and $\Phi_{kX} : QF(kX) \to kX$ is $z^{\#}$ -irreducible, $\Phi_X^k : kQF(X) \to kX$ is $z^{\#}$ irreducible. Take any zero-set Z in $\beta QF(\vec{X})$. Then, by Lemma 2.1, $cl_{\beta OF(X)}(int_{\beta OF(X)}(Z)) \cap kQF(X) \in Z(kQF(X))^{\#}$ and

$$\Phi_X^k (cl_{\beta QF(X)} (int_{\beta QF(X)}(Z)) \cap k\Lambda X) = \Phi_\beta (h (cl_{\beta QF(X)} (int_{\beta QF(X)}(Z)))) \cap kX \in Z(kX)^{\#}.$$

By Lemma 2.1, $\Phi_{\beta}(h(cl_{\beta QF(X)}(int_{\beta QF(X)}(Z)))) \in Z(\beta X)^{\#}$ and so $\Phi_{\beta} \circ$ h is a $z^{\#}$ -irreducible map. Proposition 2.4, $h: \beta QF(X) \to QF(\beta X)$ is a $z^{\#}$ -irreducible map. Since $\beta QF(X)$ and $QF(\beta X)$ are quasi-F spaces, h is a homeomorphism.

Let X be a space such that $\beta QF(X) = QF(\beta X)$. By Corollary 3.3, there is a homeomorphism $m_X : \beta QF(X) \to \beta QF(kX)$ such that $\beta_{QF(kX)} \circ t_X = m_X \circ \beta_{kQF(X)}$. Since $m_X \circ \beta_{kQF(X)}$ is an embedding, t_X is an embedding.

A subspace X of a space Y is called C^* -embedded in Y if for any realvalued continuous map $f: X \to R$, there is a continuous map $g: Y \to R$ such that $g|_X = f$. For any space X, X is C^{*}-embedded in βX and if $X \supseteq Y \supseteq W \supseteq \beta X$, then Y is C^{*}-embedded in W ([2]). Hence we have the following

COROLLARY 3.6. Let X be a space such that $\beta QF(X) = QF(\beta X)$. Then kQF(X) is a C^{*}-embedded subspace of QF(kX).

THEOREM 3.7. Let X be a space. Then the following are equivalent :

(1) kQF(X) = QF(kX),

(2) t_X is an onto map and $\beta QF(X) = QF(\beta X)$, and (3) Φ_X^k is an onto map and $\beta QF(X) = QF(\beta X)$.

Proof. (1) \Rightarrow (2) By Corollary 3.5, it is trivial.

 $(2) \Rightarrow (3)$ Since Φ_X and t_X are onto maps, Φ_X^k is an onto map. (3) \Rightarrow (1) Let $f = \Phi_X^k$. Take any $x \in kX$. Since f is an onto map and Φ_X is a covering map, f(kQF(X) - QF(X)) = kX - X([8]). Since $\beta_{kX} \circ f = \Phi_{\beta} \circ h \circ \beta_{kQF(X)}, \ f^{-1}(x) = (\Phi_{\beta} \circ h)^{-1}(x) = \phi_{\beta}^{-1}(X) \subseteq$ kQF(X) - QF(X). Since $\Phi_{\beta} \circ h$ is a covering map, $f^{-1}(x)$ is a compact subset of kQF(X) and hence f is a compact map. By Corollary 3.6, $f^{-1}(x) = \Phi_{\beta}^{-1}(x) \subseteq QF(kX).$

Let F be a closed set in kQF(X) and $x \in kX - f(F)$. Then $f^{-1}(x) \cap$ $F = \emptyset$. Since $f^{-1}(x)$ is compact, there are $A, B \in Z(\beta X)^{\#}$ such that $f^{-1}(x) \subseteq \Sigma_A, F \subseteq \Sigma_B$ and $A \cap B = \emptyset$. Since $\Phi_\beta(\Sigma_B) = B$ and

 $\Phi_{\beta}^{-1}(x) \cap \Sigma_B = f^{-1}(x) \cap \Sigma_B = \emptyset, \ x \notin B.$ Since $cl_{kX}(f(F)) \subseteq B$, $x \notin cl_{kX}(f(F))$. Thus f is a closed map and so f is a perfect map.

Since $m_X \circ \Phi_\beta \circ \beta_{kQF(X)} = \beta_{kX} \circ \Phi_X^k$ and $m_X \circ \Phi_\beta$ is a covering map, Φ_X^k is a covering map. Since kQF(X) is a quasi-F space, there is a covering map $l: kQF(X) \to QF(kX)$ such that $\Phi_{QF(kX)} \circ l = \Phi_X^k$. Since $QF(X) = \Phi_\beta^{-1}(X)$ and $QF(kX) = \Phi_\beta^{-1}(kX)$, $l \circ k_{QF(X)} = t_X \circ k_{QF(X)}$. Since $k_{QF(X)}$ is a dense embedding, $l = t_X$ is a homeomorphism. \Box

References

- F. Dashiell, A. Hager, and M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Canad. J. Math. 32 (1980), 657-685.
- [2] L. Gillman and M. Jerison, *Rings of continuous functions*, Van Nostrand, Princeton, New York, 1960.
- [3] A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958), 482-489.
- [4] M. Henriksen, J. Vermeer, and R. G. Woods, Wallman covers of compact spaces, Dissertationes Math. 280 (1989), 1-31.
- [5] M. Henriksen, J. Vermeer, and R. G. Woods, *Quasi-F-covers of Tychonoff spaces*, Trans. Amer. Math. Soc. **303** (1987), 779-804.
- [6] S. Iliadis, Absolute of Hausdorff spaces, Sov. Math. Dokl. 4 (1963), 295-298.
- [7] C. I. Kim and K. H. Jung, Minimal Basically Disconnected covers of some extension, Commun. Korean Math. Soc. 17 (2002), 709-718.
- [8] J. R. Porter and R. G. Woods, *Extensions and Absolutes of Hausdorff spaces*, Springer Verlag, Berlin, 1988.
- J. Vermeer, The smallest basically Disconnected preimage of a space, Topology Appl. 17 (1984), 217-232.
- [10] Y. S. Yun and C. I. Kim, An extension which is a weakly Lindelöf space, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 19 (2012), 273-279.

Department of Mathematics Education Dankook University Yongin 448-701, Republic of Korea *E-mail*: kci206@hanmail.net

**

School of Liberal Arts Seoul National University of Science and Technology Seoul 139-743, Republic of Korea *E-mail*: jkh58@hanmail.net

^{*}